
A test of the numerical solution of the complete equations for the case of free convec- 
tion with heating from above indicates that the main properties of the flow structure deter- 
mined by the shape of the temperature curve at the upper boundary are retained in a wide in- 
terval of Grashof numbers [2]. There is reason to expect the same thing for the analyzed 
case of mixed convection also. 
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IRRIGATION AND AERATED-ZONE SOILS 

N. N. Verigin and S. V. Vasil'ev UDC 551.491-624.131 

A constant specific flow rate q is used at the surface of the soil in irrigation and 
desalination; rather similar conditions occur at the soil surface during reservoir filling. 

Consider the flow through a soil in the aeration zone for q > k (k is the filtration 
factor); the region subject to the flushing then consists of two zones: a fully saturated 
one, where the pressure is p > 0 (the gravitational zone) and an incompletely saturated one, 
where the pressure is p < 0 (the capillary zone). Then a layer of water appears on the sur- 
face, ~hosedepth increases with time. This situation has been examined for one particular 
case previously [i]. 

There are two approaches to such problems~ 

i. Vedernikov's theory indicates that the negative-pressure zone (capillary zone) has 
a negligible air content, while the capillary pressure Pc = -- YHc acts at the flooding front. 
Then for q > k there are zones having positive and negative pressures, within which Laplace's 

equation applies. 

2. Richards' nonlinear equation applies for the incompletely saturated zone; in that 
case, we have to consider the two zones together, with Laplace's equation applying to one and 
Richards' equation applying to the other. 

Vedernikov's theory indicates that a supply rate q s k causes the capillary negative 
pressure to vanish instantly at the surface of the soil, the result being a layer of water 

of depth H(t). 

However, this results in a negative pressure at the surface of the soil covered by the 
water layer which is impossible; the conflict is easily eliminated by assuming that a water 
layer arises at the surface only after a certain time tl, as is actually observed. The pene- 
tration into the soil occurs in two stages. In the first stage, there is no surface layer, 
while the capillary negative pressure falls from H c to 0. In the second stage, the water 
layer appears, and the depth of this steadily increases. 

Here we consider the penetration of the water into the soil on the assumption that H c 
vanishes instantaneously; we also examine the effects of deleting this assumption. During 
the infiltration in the absence of the water layer, i.e., when the infiltrating water has not 
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yet reached the groundwater level, the following balance equation applies for any time t~ 

= ZZ(t) + ~l(t) (q > k), (1)  

where I is the penetration depth, ~ is the saturation deficiency, and q = qo - ~ is the dif- 
ference between the input flow rate qo and the evaporation rate g. 

The differential equation for the penetration rate is then put as 

~dl/dt = k[H(t) ~- 1 ~- Hc]/l .  (2)  

The result from (1) and (2) in [2] was 

z lo.~+~[ z ]o,5-~ 1 (3) 
l A,Ho(,+Z) j i ~ H o ~ + ; ) ]  = ~ + F  

where 

A 1 ,  ~ = 0.5(k/q)(l /~ - -  1)(% ~ t); % = V I + X; ~ = 0.5/ao 

=4(q/k)9 / ( i  - -  H,)2;~ = qt/Hc 

(the subscript Ito A corresponds to the positive sign, while subscript 2 corresponds to the 
negative sign). Table I gives the values of ~ and A:,2 for ~ = 0.2. 

Then (3) gives a particular solution as ~ = A~qt for H c = 0. 

We used (3)to construct I/H c = f~(q/k, ~) curves for ~ = 0.2 (Fig~ la, dashed lines). 
These curves an~ (i) were used to define the depth of the water layer as a function of time 
H/H c = f2(q/k, t) (Fig. ib, dashed lines). It is clear from the behavior of these curves 
that H < 0 for a certain time to, and only for t > to does H become positive. The solution 
to (3) for q/k = i gives a negative H for any value of t(to = =); negative H is impossible, 
and therefore joint solution of (i) and (3) gives a more or less correct result only for t 
to. 

Figure 2 shows to = qto/H c as a function of q/k for ~ = 0.2 (curve i). 

The values for to and ~o corresponding to H = 0 in Fig. i are determined by solving (i) 
and (3) for H = 0. 

We differentiate (i) with respect to t, put dH/dt = 0 and substitute dl/dt from (2) into 
(i) to get 

H__gM = (q -- k) ~M-- ~k - # U  
Hc q _ ~ ( ~ _ ~ )  , tU =~r162 (4) 

Then (i), (3), and (4) are solved together to define tM, IM, and H M at point M, which corre- 
sponds to minimum H (Fig. i); from (4) with H M = 0 and t M = to we get q/k = f(~, Hc) , this 
being the result such that (3) applies for any t (in that case, negative H does not occur). 

If H is to be positive for t small, or else zero, a different approach is required [3, 
4]. 

We assume that during the period 0 < t < tl the entire input flow q soaks into the soil, 
and therefore there is no surface layer (H = 0). At the start t = 0, the negative pressure 
H c arises at the wetting front and at the surface of the soil. Disruption of the capillary 
forces at the surface causes this negative pressure to fall from H c to zero over a period t:. 
The negative pressure at the wetting front remains constant at H e = const~ 

The boundary conditions are then as follows for this period: i) the pressure at the 
infiltration front is p(l, t) = --yH c = const; and 2) the flow rate is q = --k~h(x, t)/~x = 
const. 

The flow rate q is constant for any x and t, since in this case of one-dimensional infil- 
tration the rate can only be a function of t and it becomes independent of t if the water is 
supplied at a constant rate. 

The result q = const and specification of the pressure at the wetting front together 
ensure that the solution is unique; then the height of the equivalent capillary layer h c at 
the surface is dependent on t, the value falling to zero from the maximum value H c. 
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TABLE I 

,4, ~'| 2,87 1 2,~3 i,75 
A= t,00 J 0,87 J 0,78 ] 0,72 
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From (i) and (2) with H = 0 we have 

~ d l / d t  = k ( - - h  c -~ I + H c ) / l ,  qt = ~ l ,  ( 5 )  

w h e r e  h i s  t h e  c a p i l l a r y  n e g a t i v e  p r e s s u r e  a t  t h e  s u r f a c e .  
c 

We t h e n  s o l v e  (5 )  w i t h  t h e  c o n d i t i o n s  t = 0 ,  l = 0 ,  h c = H c t o  g e t  t h e  w e t t e d  d e p t h  
a n d  t h e  c a p i l l a r y  v a c u u m  a s  f u n c t i o n s  o f  t i m e :  

l : q t /~ ,  h c = H c -  (qt/~t)(q/k - -  1). (6 )  

We f i n d  t~  a n d  l~  ( t h e  w e t t e d  d e p t h  a t  t h e  end  o f  t h i s  p e r i o d )  f r o m  (6 )  w i t h  t h e  c o n d i -  
t i o n s  t = t l ,  1 = l ~ ,  h c = 0 ;  we h a v e  

t l  : ~ H c k ~ ( q  - -  k)," l 1 = k H c / ( q  - -  k) .  (7 )  

C u r v e  2 o f  F i g .  2 shows  q t , / H  c = T ( q / k )  f r o m  p = 0 . 2 .  

In the subsequent period t > tl, we derived the result from (i) by substituting H into 
(2) and integrating the equation from l, t to 11, t:, which gives 

(8) 
L7- r j = c (i +7) ' 

The solid lines in Fig. la show I/H_ = ~ x(~, q/k), while those in Fig. ib show H/H c = 
~=(~, q/k), as constructed from (i) and ~8) with ~ = 0.2. 

The solution to (3) (broken lines in Fig. i) may be compared with the results from (7) 
and (8) (solid lines in Fig. i), which shows that (3) gives I larger but H smaller. The 
maximum difference between the results from (3) and (8) occurs for q/k = 1.0 but the differ- 
ence then falls as q/k and t increase, and the difference does not exceed 10% for q/k ~ i0. 
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